
Offensive VBA
Old tricks for new dogs

Who Am I?

Juan Manuel Fernández (@TheXC3LL)

● Biologist
● Red Team at MDSec
● Adepts of 0xCC founder
● Member of Ka0labs
● CTF player with ID-10-Ts (inactive :()

Intro

Disclaimer
● All TTPs shown here are PUBLIC. No private

techniques are going to be disclosed. I’m sorry
:(

● All the references are listed in the last slide

● I will use MS Office 64-bit

Red Team loves Macro-enabled docs
Initial Access

● Being widely exploited for decades as Inicial Access payload in phishing campaigns.

Lateral Movement

● Cloud to On-Premise
○ SharePoint/OneDrive

● Workstation to Workstation
○ DCOM, shared folders, internal phishing…

Persistence

● Templates
● Outlook OTMs

 Initial Access stoppers

Attack Surface
Reduction

Never found a problem in real
world :/

Mark-of-the-Web

Just ask the user to save the file in
a Trusted Location

“Enable macros” message

Just ask the user to save the
file in a Trusted Location

Enforce code-signing

Self-signed macros
LOLDocs

Macros 101

Data Types (64-bit)
At this moment we only care about these types (let’s keep it simple)

Calling functions from DLLs
You “Declare” a function or sub for the import

Arguments can be passed:

● ByVal (value itself)
● ByRef (pointer to the value)

Example:

● Private Declare PtrSafe* Function NtClose Lib "ntdll" (ByVal ObjectHandle As LongPtr) As Long

Calling functions from DLLs

Interesting stuff that would be useful later ;)

● The DLL is only loaded (if it is not was loaded previously) the first time the imported function is
called (and same happens with address resolution). Not when the document is loaded.

● This could be abused to side-load a malicious DLL

Structs
User-defined type is the equivalent to C structs

● Aligned to 4 bytes
● Total size can be calculated with LenB(your-struct)

Structs
You can save time using offsetof()

Structs
You can save time using offsetof()

Dealing with memory

Cornerstone

● RtlMoveMemory from Kernel32.dll (later we will work with alternative methods)

Pointers

● The only “low-level” information we can obtain is the memory address of a variable
(VarPtr()/ObjPtr()/StrPtr())

● We are completely blind and everything is managed at “high-level” :(

Buffers

● Use byte arrays and resize (dim tmpBuf() as Byte; redim tmpBuf(0 To 15))
● Copy memory to the address of the first element (Call RtlMoveMemory (VarPtr(tmpBuf(0)),

RandomPointer, 16))

Dealing with memory

Addresses / “numeric stuff”

● We can copy the data directly in a LongPtr variable (8 bytes). For example, if we want to extract a
pointer from an struct we can do:

Dealing with memory
Strings (LPSTR to VBA string)

● Calculate size with lstrlenA

● Copy buffer

● Call StrConv(buffer,vbUnicode)

Dealing with memory
Strings (LPWSTR to VBA string)

● Calculate size with lstrlenW * 2

● Copy buffer

VBA Alchemist

VBA Alchemy

VBA Alchemy

VBA Alchemy

● Obfuscation ⇐ NO
○ Can’t obfuscate Declare statements

● Self-modification and/or staged execution ⇐ NO
○ VBOM + Application COM Object

● Use functions not cataloged as malicious ⇐ YES
○ Alternatives to trigger execution
○ Alternatives to copy memory

● Reduce Declare statements ⇐ YES
○ Poor man’s GetProcAddress / FreshyCalls

● R/W/X reuse + overwrite pointers ⇐ YES

Static analysis - On this talk

Use alternatives to well-known functions

Approach #1

Shellcode execution
Basic steps*:

● Well-known functions used in each step (HeapAlloc, RtlMoveMemory, ResumeThread…)

*This is a simplification. More or less steps could be involved based on the technique used.

Execution
In 2021 NCC published the article “RIFT: Analysing a Lazarus Shellcode Execution Method” where
EnumSystemLocalesA was used as trigger.

● This trick was documented previously by Jeff White in 2017
(https://github.com/karttoon/trigen/tree/master), probably known before.

● There are about 50 “bening” windows functions that accept a callback that can be abused

https://github.com/karttoon/trigen/tree/master

Write Shellcode - One-shot
Copy data from a buffer to a different buffer directly

● LdapUTF8ToUnicode
● PathCanonicalizeA
● …

Write Shellcode - Two-Shot
Copy data from a buffer to a intermediate place, and then from that place to a new buffer

● Set/Get twins (e.g. SetConsoleTittleA/GetConsoleTittleA)
● IPC mechanism (e.g. pipes)
● …

Resolve function addresses dynamically

Approach #2

“Classic” method

● How to get the DLL base address?
○ NtQueryInformationProcess to get PEB and then parse

My method :D

● Leak the pointer to the dll base!

My method :D

● Leak the pointer to the dll base!

My method :D

● Leak the pointer to the dll base!

Parse data

Parse data

Call functions by address
VBA doesn't’ have “function pointers”

● We can use DispCallFunc from OleAut32.dll

Call functions by address
Build a wrapper to call any function by address

The art of taming pointers

Approach #3

Idea
● If we find a pointer in memory that later is used by Excel we can overwrite it to hijack the

execution (like in exploiting).
● This way we avoid the usage of a “trigger” function (ResumeThread, EnumPages, etc.)
● Requisites:

○ Predictable location
○ Stable (don’t get overwritten before it jumps to the shellcode)

Pointer Dance
VarPtr(Dummy) => 0x022391AC5398

Pointer Dance

Find the target pointer
● It’s at an address bigger than the one returned by VarPtr()
● The pointer shares the first 4 bytes with the address returned by VarPtr()

Overwrite

Code caves R/W/X

● Excel already allocate memory with RWX permissions :D

Code caves R/W/X

● We can not overwrite random data because it can crash the process
○ Remember when I said that imports are not resolved until you call

them?

Code caves R/W/X

● We can not overwrite random data because it can crash the process
○ Remember when I said that imports are not resolved until you call

them? We can use it as placeholder!! (~250 bytes)

Code caves R/W/X

● Scan memory to find a “tag” that
identify the placeholder
○ Use different “tags” to find

each placeholder
● Hand craft a mini-shellcode that

acts as “loader” for the real
shellcode (Havoc, NightHawk,
Cobalt Strike…)
○ This “loader” must be

crafted in parts that will be
placed in each placeholder

All together
1. Leak pointer to DLL
2. Parse NTDLL
3. Patch shellcode ("loader") to perform indirect syscalling
4. Find the pointer that we are going to hijack
5. Locate the placeholders in RWX mem
6. Copy each loader chunk to the placeholders
7. Pray to the Ancient Gods
8. Overwrite the pointer
9. Wait a few seconds

10. Profit

Demo

CREDITS: This presentation template was created by Slidesgo, including
icons by Flaticon, infographics & images by Freepik

Thanks!
Questions?

@TheXC3LL

Greetings
- Template by SlideGo
- Samurai Girl by Heksiah

http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr

References
1. https://enigma0x3.net/2017/09/11/lateral-movement-using-excel-application-and-dcom/
2. https://www.mdsec.co.uk/2019/05/persistence-the-continued-or-prolonged-existence-of-some

thing-part-1-microsoft-office/
3. https://adepts.of0x.cc/vba-outlook/
4. https://www.outflank.nl/blog/2023/04/25/so-you-think-you-can-block-macros/
5. https://files.brucon.org/2022/LOLDocs-Outflank.pdf
6. https://learn.microsoft.com/en-us/deployoffice/security/trusted-locations
7. https://codekabinett.com/rdumps.php?Lang=2&targetDoc=api-pointer-convert-vba-string-ansi-

unicode
8. https://blog.sevagas.com/IMG/pdf/my_vba_bot.pdf
9. https://research.nccgroup.com/2021/01/23/rift-analysing-a-lazarus-shellcode-execution-metho

d/
10. https://web.archive.org/web/20210130171924/http://ropgadget.com/posts/abusing_win_functi

ons.html
11. https://adepts.of0x.cc/vba-exports-runtime/
12. https://secureyourit.co.uk/wp/2020/11/28/vbafunctionpointers/
13. https://adepts.of0x.cc/vba-hijack-pointers-rwa/

